
Expressing Pipeline Parallelism Using TBB Constructs
A Case Study on What Works and What Doesn’t

Eric C. Reed ∗

Rose-Hulman Institute of Technology
reedec@rose-hulman.edu

Nicholas Chen Ralph E. Johnson
University of Illinois at Urbana-Champaign

{nchen,rjohnson}@illinois.edu

Abstract
Task-based libraries such as Intel’s Threading Building
Blocks (TBB) provide higher levels of abstraction than
threads for parallel programming. Work remains, however,
to determine how straightforward it is to use these libraries
to express various patterns of parallelism. This case study
focuses on a particular pattern: pipeline parallelism. We
attempted to transform three representative applications –
content-based image retrieval, compression and video en-
coding – to pipelines using TBB. We successfully converted
two of the three applications. In the successful cases we
discuss our transformation process and contrast the expres-
sivity and performance of our implementations to existing
Pthreads versions; in the unsuccessful case, we detail what
the challenges were and propose potential solutions.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]: Patterns; D.3.3 [Language Constructs and
Features]: Patterns

General Terms Design, Measurement, Performance

Keywords Pipeline Parallelism, Threading Building Blocks,
Pthreads, Pattern

1. Introduction
Pipeline parallelism [14] is an increasingly popular paral-
lel programming pattern for emerging applications. Many
stream applications in the domain of digital signal process-
ing, graphics, and encryption are naturally expressed using
the pipeline parallelism pattern.

Typically, these applications have been parallelized us-
ing the low-level constructs of a threading library, such as
Pthreads, which could have deleterious consequences on un-
derstandability, maintainability and performance (scaling,
load balancing). Researchers and practitioners agree that
programming with threads is notoriously difficult and er-
ror prone [4, 10]. There have been several attempts at pro-
viding higher levels of abstraction than threads for express-
ing pipeline parallelism. Some of these efforts rely on spe-
cialized programming languages: Brook [5], StreamIt [20]

∗ Eric Reed was a Passionate on Parallel REU intern at the University of
Illinois while this study was conducted.

and StreamC/KernelC [9]. However, legacy code abounds
making it challenging to adopt a new language. Thus, task-
based libraries such as TBB [1] and Microsoft’s Task Paral-
lel Library (TPL) in .NET [11] offer attractive alternatives
for legacy code. Some task-based libraries, such as TPL, do
not offer a specialized pipeline construct but require devel-
opers to build one up using existing data structures such as
BlockingQueue [6]. Other libraries, such as TBB, include
specialized pipeline constructs (Section 4) to make it easier
to express pipeline parallelism.

The question remains: can we use these libraries to ex-
press the kinds of parallelism that exist in programs already
parallelized using Pthreads? If so, then these libraries are at-
tractive alternatives to Pthreads. On the other hand, if these
libraries are insufficient, then we need to ask what’s miss-
ing? This case study is a step in answering those questions.
We document the challenges and lessons learned from man-
ually converting three representative pipeline applications –
content-based image retrieval, compression and video en-
coding – to use the pipeline construct in TBB. Each applica-
tion had a corresponding version parallelized using Pthreads.
We closely mimicked the parallelism strategies used in the
Pthreads versions to provide a fair and useful comparison.
We successfully transformed the content-based image re-
trieval (ferret) and compression (dedup) applications but had
difficulties with the video encoder (x264). Below, we briefly
summarize the lessons learned; Section 5 goes into greater
details.

Expressivity The initial transformation of the sequential
code to TBB pipelines took the most time because we
had to manually resolve and analyze the dependencies
between stages. Because TBB’s pipeline also enforces
certain restrictions on structure and control flow, we had
to apply some non-obvious transformations. It is likely
that developers would have to apply similar transforma-
tions while working on complex sequential code. Table 1
summarizes those transformations; Section 5 discusses
them in detail.
After performing the transformations, we see a reduction
in the amount of boilerplate code (setting up mutexes,
semaphores, etc) that needs to be written compared to the

https://wiki.engr.illinois.edu/display/reu/Passionate+on+Parallel+REU+Home


Application Challenges Solution

Ferret Recursive pipeline stage Replace recursion with a
stack

Dedup
Single input, multiple
outputs

Nested pipelines

Stage bypassing Enforce single path

x264 Backward and forward
dependencies

Not expressible using
TBB pipeline

Table 1. Main challenges in transformation process

Pthreads counterparts. Overall, the stages of the pipeline
were made more explicit and it was easier to add new
pipeline stages.

Performance The converted ferret program performed on
par with its Pthreads counterpart in terms of running time.
The converted dedup application ran up to 2.13 times
faster than its counterpart after the conversion. In both
converted applications, the memory requirements were
comparable. Overall, when it was possible to successfully
convert the applications, TBB presents an comparable
alternative to Pthreads in terms of performance while also
increasing maintainability.

2. Methodology
The three applications we studied were from the Prince-
ton Application Repository for Shared-Memory Comput-
ers (PARSEC) [3], a benchmark suite for shared-memory
multithreaded programs. PARSEC is unique because it is
application-driven; it aims to capture emerging workloads
that are missing from typical high-performance computing
benchmarks. PARSEC already includes parallel versions of
its applications parallelized using Pthreads. Thus, PARSEC
is an ideal research testbed to answer the following research
questions:

Expressivity Are the pipeline constructs in TBB 3.0 suffi-
cient to faithfully express the patterns of pipeline paral-
lelism present in the Pthreads versions of the applica-
tions? Does using these constructs improve the under-
standability and maintainability of the application?

Performance What are the performance impacts, if any,
from transforming the applications to use the new TBB
pipeline constructs? Are these performance impacts se-
vere enough to deter developers from using TBB?

We measured the performance of each benchmark (origi-
nal Pthreads version and modified TBB version) on a ma-
chine with four Intel Xeon L755 processors running at
1.87GHz with 64GB of memory. Each processor has eight
cores capable of simultaneous multi-threading with two
threads each. In total, the machine is capable of up to 64
hardware threads. The operating system is CentOS release

5.5 running the 2.6.18-194.26 Linux Kernel. We used both
GCC 4.1.2 and Intel ICC 11.1.

PARSEC provides the parsecmgmt tool for building and
running its applications. Additionally, it also provides sev-
eral input sets for each application. To make it possible for
others to repeat our experiments, we made our modifica-
tions compliant with parsecmgmt and use it to run perfor-
mance benchmarks using the native input set, the largest in-
put set that closely resembles the typical input sets for each
application. Our modifications are available from http://

vazexqi.github.com/ParsecPipelineParallelism.

3. Related Work
Navarro et al. [15] also used ferret and dedup as exam-
ples of pipeline parallelism. Their work focused on mod-
eling the performance differences between the Pthreads
and TBB versions by creating analytical models of parallel
pipelines based on queueing theory. They concluded that due
to efficient work-stealing, the TBB versions outperform the
Pthreads version even without optimizations such as over-
subscription and stage collapsing. We, on the other hand,
focused on the transformation process and tried to faithfully
express the Pthreads versions in our TBB versions. When
Navarro et al. encountered the problem of supporting mul-
tiple tokens in dedup (Section 5.2) they used a combination
of Pthreads and TBB; we used nested pipelines instead and
expressed everything cleanly with TBB.

Thies et al. [19] first proposed an annotation-based method
for automatically detecting and parallelizing pipeline paral-
lelism in C programs. Rul et al. [17] improved on their work
and automatically detect and parallelize pipeline parallelism
in applications without any annotations. Both tools take sev-
eral hours to run and consume huge amounts of memory
even on small programs They detect limited templates of
pipeline parallelism based on data access. The transformed
program is in binary form, making it hard to examine the par-
allelized program. Nonetheless, these tools are useful start-
ing points for suggesting where pipeline parallelism exists;
ultimately the developer would use higher-level constructs
such as TBB’s to make the parallelism explicit in source
code.

Thies et al. [18] characterized the behavior of 65 stream
programs; some of which employed pipeline parallelism.
They addressed three main aspects: barriers to paralleliza-
tion, scheduling characteristics and programming styles.
While the programs were written using the StreamIt lan-
guage, their findings are useful for designing future lan-
guages and libraries. It would be worthwhile to create a
catalog and characterize the behaviors of stream programs
written in general purpose languages such as C/C++ to see
how they compare.

MacDonald et al. [13] proposed the master-slave schedul-
ing technique that TBB uses as its execution model for
pipelines. They implemented their technique in the pattern-

http://vazexqi.github.com/ParsecPipelineParallelism
http://vazexqi.github.com/ParsecPipelineParallelism


based parallel programming system CO2P3S. The CO2P3S
system enabled a top-down approach to developing parallel
programs: a developer selected the parallel programming
patterns (pipeline parallelism being one of the selections),
configured the parameters and the system generates the
skeleton code (Java) for the different components. Because
this system requires programs to be designed from scratch,
it is not possible to use it on legacy code.

4. The TBB Pipeline Construct

Filter1 Filter2 Filter3
token token

Figure 1. An example of a three-stage pipeline

In TBB, a pipeline is composed of a series of filters.
Each filter takes an input token, processes it and produces
an output token. The first filter in the pipeline does not re-
quire an input token; similarly the last filter does not pro-
duce an output token. To implement the pipeline shown in
Figure 1, requires creating three Filter objects and com-
posing them together in a Pipeline object as shown in Fig-
ure 2. Filter objects can be serial or parallel. Only one
token can be working at a time in a serial filter – this en-
forces a way to process tokens in order. Multiple tokens can
be working at a time in a parallel filter – this provides a way
to execute tokens in an out-of-order manner in parallel to
improve throughput. Tokens in different filters may run si-
multaneously.

1 # i n c l u d e ” t b b / p i p e l i n e . h ”
2

3 c l a s s F i l t e r 1 : p u b l i c t b b : : f i l t e r {
4 / / g e n e r a t e t o k e n s
5 void∗ operator ( ) ( void∗ t o k e n ) ;
6 } ;
7 c l a s s F i l t e r 2 : p u b l i c t b b : : f i l t e r {
8 / / p r o c e s s t o k e n s and o u t p u t t o k e n s
9 void∗ operator ( ) ( void∗ t o k e n ) ;

10 } ;
11 c l a s s F i l t e r 3 : p u b l i c t b b : : f i l t e r {
12 / / p r o c e s s t o k e n s
13 void∗ operator ( ) ( void∗ t o k e n ) ;
14 } ;
15

16 / / Cr ea t e t h e p i p e l i n e
17 t b b : : p i p e l i n e T h r e e S t a g e P i p e l i n e ;
18 T h r e e S t a g e P i p e l i n e . a d d f i l t e r ( new F i l t e r 1 ( ) ) ;
19 T h r e e S t a g e P i p e l i n e . a d d f i l t e r ( new F i l t e r 2 ( ) ) ;
20 T h r e e S t a g e P i p e l i n e . a d d f i l t e r ( new F i l t e r 3 ( ) ) ;
21 / / Run t h e p i p e l i n e
22 T h r e e S t a g e P i p e l i n e . run ( ) ;

Figure 2. Expressing the pipeline in Figure 1 using TBB

To transform an existing program to use pipeline paral-
lelism in TBB requires three steps: (i) identify the stages of
a pipeline and convert them into serial or parallel Filter ob-
jects; (ii) identify the tokens that pass through each Filter

object and override operator() to process them; (iii) con-
struct a Pipeline object and call its run() method. The
pipeline constructs take care of most of the bookkeeping that

happens underneath. In contrast, implementing a Pthreads
version would require two additional boilerplate steps: (i)
create a BlockingQueue in between each filter to hold to-
kens that might arrive earlier due to load imbalance between
stages (ii) wrap each token with a sequence number in the
event to identify which tokens to process in order when nec-
essary.

TBB’s pipeline execution model is based on MacDon-
ald’s work [13]. This tasking model alleviates the ramp-
up/ramp-down problem as the pipelines starts/ends while
also providing better load-balancing by allocating more
tasks to different filters dynamically. TBB’s pipeline also
preferentially carries a token as deep into the pipeline as
possible before switching to a different task; this improves
memory performance as the token is more likely to remain
in cache for each filter. Since these optimizations are built
into the constructs, the developer is freed from having to
manage any of these issues. In contrast, developers using
Pthreads might have to implement these optimizations by
hand to improve performance.

This section described the advantages that TBB offer in
terms of reducing boilerplate code and its built-in mecha-
nisms for improving performance. The next section exam-
ines whether these built-in constructs and mechanisms actu-
ally help or hinder developers as they try to express paral-
lelism in the PARSEC applications.

5. The Applications
Ferret, dedup and x264 exhibit pipeline parallelism in dif-
ferent forms and provide a good sample of the cases that
developers might encounter. We describe the applications in
increasing order of complexity.

5.1 Ferret

Segment Extract Query RankInput Output
parallel parallel parallel parallelserial serial

Figure 3. Six-stage pipeline of ferret

Ferret (10,765 SLOC) is a content-based image search
application [12]. Given an input image, it segments the im-
age, extracts relevant features, queries the database for can-
didate images, ranks the candidates based on similarity and
outputs the results. These six stages are shown in Figure 3.
The input and output stages are serial; the four middle stages
can run in parallel.

The Pthreads version uses oversubscription: specifying
the program to run with x threads would create x threads for
each of the parallel stages. BlockingQueues configured for
a maximum of 20 items were used to pass tokens between
stages. The files ferret-parallel.c (437 SLOC) and tpool.c
(92 SLOC) set up and coordinated the parallelism using
Pthreads.

Mapping ferret to TBB’s pipeline was relatively straight-
forward: each stage was transformed into a Filter object



and marked as serial or parallel. The main challenge was the
input stage: it used recursion to obtain a list of images from
a root directory; TBB Filter objects are not permitted to
recursively call itself. We solved this by replacing recursion
with a stack object. This problem with recursive calls seems
common and would need to be handled in a similar manner
by other developers for their own projects.

Our TBB implementation, ferret-tbb.cpp reduced the
lines of code to 376 SLOC by eliminating the boilerplate
code that needs to be written to set up the blocking queues
and thread pools. It made each stage of the pipeline more
explicit and facilitated adding new stages, as necessary. Fig-
ure 4 shows that the TBB versions performed on par with
the Pthreads version for the native test input of 3,500 image
queries. The scalability of pipelines is limited by the serial
I/O stages; in ferret, performance does not scale beyond 20
threads.

0

100

200

300

400

500

600

700

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Ferret Execution Time (seconds vs. number of threads)

gcc-pthreads gcc-tbb icc-pthreads icc-tbb

Figure 4. Execution time for ferret

5.2 Dedup
Dedup (5,968 SLOC) is a compression kernel that uses the
“de-duplication” method [3]. Given a data stream to com-
press, it splits the data into smaller blocks; splits the blocks
into smaller segments; computes and checks the hash for
each segment; compresses the segments, if necessary; orga-
nizes the segements and blocks in their proper order; and,
finally, writes the compressed stream. Figure 5(a) shows the
configuration for the Pthreads implementation.

Two artifacts make dedup challenging to parallelize:

Single input, multiple outputs The SplitBlocks stage
takes a block and splits it into smaller segments; it takes
a single input token and produces multiple output tokens.
However, Filter objects in TBB can only take a single
input and produce a single output. To mimic the Pthreads
version, we had to resort to nested pipelines as shown in
Figure 5(b). The inner pipeline deals with segments while
the outer pipeline deals with blocks. We needed to add the
ReassembleBlocks stage to reassemble segments into
blocks before passing the tokens to the outer pipeline as
both pipelines operate on different types of data granu-
larity. Figure 6 shows the code snippet for implementing

nested pipelines. Lines 19-37 show the construction and
execution of the inner pipeline.

1 /∗ THE OUTER PIPELINE CLASSES ∗ /
2 c l a s s S p l i t D a t a : p u b l i c t b b : : f i l t e r { . . . } ;
3

4 c l a s s P r o c e s s B l o c k s : p u b l i c t b b : : f i l t e r {
5

6 . . .
7

8 p r o t e c t e d :
9 /∗ THE INNER PIPELINE CLASSES ∗ /

10 c l a s s S p l i t B l o c k s : p u b l i c t b b : : f i l t e r { . . . } ;
11

12 c l a s s CheckHash : p u b l i c t b b : : f i l t e r { . . . } ;
13

14 c l a s s Compress : p u b l i c t b b : : f i l t e r { . . . } ;
15

16 c l a s s ReassembleBlocks : p u b l i c t b b : : f i l t e r { . . . } ;
17

18 p u b l i c :
19 void∗ operator ( ) ( void∗ t o k e n ) {
20

21 t b b : : p i p e l i n e p i p e l i n e ;
22 S p l i t B l o c k s s p l i t ( ) ;
23 CheckHash check ;
24 Compress compress ;
25 ReassembleBlocks r e a s s e m b l e ( ) ;
26

27 p i p e l i n e . a d d f i l t e r ( s p l i t ) ;
28 p i p e l i n e . a d d f i l t e r ( check ) ;
29 p i p e l i n e . a d d f i l t e r ( compress ) ;
30 p i p e l i n e . a d d f i l t e r ( r e a s s e m b l e ) ;
31

32 / / Run t h e i n n e r p i p e l i n e
33 p i p e l i n e . run ( ) ;
34 p i p e l i n e . c l e a r ( ) ;
35

36 . . .
37 } ;
38 } ;
39

40 c l a s s W r i t e O u t p u t : p u b l i c t b b : : f i l t e r { . . . } ;

Figure 6. Nested pipelines in TBB

Stage bypassing The CheckHash stage can either proceed
to the Compress or WriteOutput stage depending on
its result. In TBB, it is not possible to bypass a stage;
instead, all tokens will proceed through Compress stage.
An additional flag would need to be added in the token to
signal whether it needs to be compressed.

At first glance, having to use nested pipelines and not be-
ing able to bypass stages seem counterintuitive and detri-
mental to performance. Nested pipelines creates many more
temporary objects in memory; not being able to by-pass
stages requires redundant processing. However, our experi-
ment shows that the increased parallelism more than com-
pensates for the overhead. Figure 7 shows the execution
times of both versions with the native test input of compress-
ing an ISO file of 672 MB. The TBB version compiled us-
ing GCC consistently outperforms the other versions. The
scalability of pipelines is limited by the serial I/O stages; in
dedup, performance does not scale beyond 32 threads.

Nested pipelines, however, required more code to express
and could be more difficult to understand. In the Pthread
version, the files encoder.c (148 SLOC) and queue.c (81



Split
Data

serial

Write
Output

serial

Split
Blocks

parallel

Check
Hash

parallel

Compress

parallel

(a) Pthreads implementation of dedup

Split
Data

serial

Write
Output

serial

ProcessBlocks

parallel

Split
Blocks

Check
Hash Compress

Split
Blocks

Check
Hash Compress

Split
Blocks

Check
Hash Compress

...
...

...

Reassemble
Blocks

Reassemble
Blocks

Reassemble
Blocks

...

(b) TBB implementation of dedup

Figure 5. Dedup pipeline configurations

0

10

20

30

40

50

60

70

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Dedup Execution Time (seconds vs. number of threads)

gcc-pthreads gcc-tbb icc-pthreads icc-tbb

Figure 7. Execution time for dedup

SLOC) set up and coordinated the parallelism. In the TBB
version, a single file, encoder-tbb (418 SLOC) was used.

5.3 x264
x264 (29,324 SLOC) is an HD video encoder for the
H.264/MPEG-4 standard [2]. The encoder predicts the con-
tents of a frame from previously encoded reference frames.
A frame can reference frames that occur before or after it-
self in play order. Parts of frames, called macroblocks, do
not necessarily use the same reference frames.

There are three types of macroblock: intra blocks (I-
blocks), predicted blocks (P-blocks), and bipredicted blocked
(B-blocks). I-blocks do not reference other frames. P-blocks
reference only one frame. B-blocks reference a frame before
and a frame after itself [16]. An I-frame consists entirely of
I-blocks. A P-frame contains as least one P-block, but no
B-blocks. A B-frame contains at least one B-block. Circular
frame dependencies are not allowed, so dependencies define
a partial ordering on frames. Once a frame has been encoded,
it is available for its dependents in a global buffer. Before a
frame can be encoded, all of its dependencies must be in the
buffer. Figure 8 shows a valid configuration of frames and
the dependencies between frames.

The x264 implementation in PARSEC assigns a Pthread
to each frame. Each frame has a condition variable associ-
ated with it, which is used to broadcast readiness to depen-
dents. By waiting on the condition variables of all its depen-
dencies, a frame ensures it will block until its dependencies
are ready. Just before a frame enters the encoding process,
its type (I, P, or B) and dependencies are decided in a way

I B B P X Y X depends on Y

Figure 8. Dependencies between I, B and P frames in H.264

that avoids potential deadlocks. In effect, the pipeline is a
dynamically constructed directed acyclic graph where each
frame is a stage [3].

The difficultly in constructing a TBB pipeline imple-
mentation of x264 is enforcing frame dependencies. TBB
pipelines structures cannot be changed while running, so
stages must be constructed from the tasks involved in en-
coding, unlike the Pthreads implementation. In a pure TBB
implementation, if multiple frames are in the pipeline then
there is no guarantee that frames near the end of the pipeline
will complete before frames near the start require them. Re-
stricting the pipeline so that frames are processed one at a
time forces the guarantee, but prevents any parallelism and
is counterproductive.

A mixed TBB/Pthreads implementation could use Pthread
condition variables in the same manner as the existing
Pthread implementation. However, when a task in the pipeline
waits on a condition variable the entire thread will block.
This prevents the usual TBB automatic load balancing be-
tween threads and requires oversubscription, which TBB
tries to avoid, to achieve significant parallelism. In this im-
plementation, TBB is little more than a wrapper around
Pthreads that provides automatic queue management, but
at a high runtime overhead due to the task scheduler.

Implementing x264 in TBB is not impossible, but the
TBB pipeline structure is not suitable. An implementation
using the new TBB graph interface [1], a wavefront [7], or
pure TBB tasks would be more feasible. x264 is a complex
application with many approaches for parallelization; for a
survey of the different partitioning strategies for paralleliz-
ing x264, refer to [8].



6. Discussion
This experience report documents the important lessons
learned from trying to implement pipeline versions of three
applications from the PARSEC benchmark suite. We doc-
ument the interesting challenges encountered and our so-
lutions for them. The solutions gleaned might prove useful
for other developers as they attempt to parallelize their own
applications.

Though we have focused on just three applications, the
lessons learned are general and have implications on the
design of future automated software engineering tools. In
particular, the conversion process of transforming sequen-
tial C++ code to pipeline stages is a necessary step when
trying to use a task-based library. The conversion process is
also the most tedious — dependencies have to be manually
analyzed and the program has to transformed in a way that is
maintainable. However, the process of transforming sequen-
tial code to use a TBB construct is simpler than a transfor-
mation to use a Pthreads construct. Tools that help identify
these dependencies in an intuitive manner and tools that help
with stepwise transformation of existing code would assist
greatly in the parallelization process.

Given the peculiarities of each application that we have
encountered, it seems unlikely that a single tool could ever
fully automatically transform a complex sequential program
to use pipeline parallelism. Pipeline parallelism is much
more advanced than loop transformation and would require
deeper analysis and more sophisticated tools. A more prag-
matic solution, instead, would be to create a series of tools
e.g. automated refactoring tools that can assist the devel-
oper through the smaller steps of preparing a program for
pipeline parallelism. Our future work would distill what
those smaller refactorings are for pipeline parallelism and
implement them in a IDE.

Acknowledgments
Eric Reed was supported by the National Science Founda-
tion under Grant No. A2133. Nicholas Chen was supported
by the US Department of Energy under Grant No. DOE DE-
FG02-06ER25752. SLOC data was generated using David
A. Wheeler’s ‘SLOCCount’.

References
[1] Intel Threading Building Blocks. http://www.

threadingbuildingblocks.org/.

[2] x264. http://www.videolan.org/developers/x264.

html.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications.
Technical Report TR-811-08, Princeton University, January
2008.

[4] H.-J. Boehm. Threads Cannot Be Implemented As a Library.
In PLDI ’05.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for gpus: stream com-
puting on graphics hardware. In SIGGRAPH ’04.

[6] C. Campbell, R. Johnson, A. Miller, and S. Toub. Parallel
Programming with Microsoft .NET. Microsoft Press, 2010.

[7] A. J. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. L.
Zapata. Wavefront template implementation based on the task
programming model. Technical report, University of Malaga,
2011.

[8] H. Hoffman, A. Agarwal, and S. Devadas. Partitioning Strate-
gies: Spatiotemporal Patterns of Program Decomposition. In
ICPADS ’10.

[9] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens. Programmable stream proces-
sors. Computer, 36:54–62, August 2003.

[10] E. A. Lee. The Problem with Threads. Computer, 39:33–42,
May 2006.

[11] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a
Task Parallel Library. In OOPSLA ’09.

[12] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret:
a toolkit for content-based similarity search of feature-rich
data. In EuroSys ’06.

[13] S. MacDonald, D. Szafron, and J. Schaeffer. Rethinking the
Pipeline as Object-oriented States with Transformations. In
HIPS ’04.

[14] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Pat-
terns for Parallel Programming. Addison-Wesley Profes-
sional, 2004.

[15] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical
Modeling of Pipeline Parallelism. In PACT ’09.

[16] I. E. Richardson. The H.264 Advanced Video Compression
Standard. Wiley, 2010.

[17] S. Rul, H. Vandierendonck, and K. De Bosschere. A profile-
based tool for finding pipeline parallelism in sequential pro-
grams. Parallel Comput., 36:531–551, September 2010.

[18] W. Thies and S. Amarasinghe. An empirical characterization
of stream programs and its implications for language and
compiler design. In PACT ’10.

[19] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A Practical
Approach to Exploiting Coarse-Grained Pipeline Parallelism
in C Programs. In MICRO ’07, .

[20] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt:
A Language for Streaming Applications. In CC ’02. Springer-
Verlag, .

http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html

	Introduction
	Methodology
	Related Work
	The TBB Pipeline Construct
	The Applications
	Ferret
	Dedup
	x264

	Discussion

